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The problem of stress concentration around curved holes without angular points, and the 
problem of an oscillating loading applied to the boundary of a half-plane are considered. 

The purpose is to investigate those properties of their solutions which result form small- 
ness of the parameter I. The system is reduced to one equation, and an asymptotic me- 

thod in the version of Vishik and Liusternik Cl] is applied to solve it. For the concentra- 
tion problem it is shown that if the solution by customary theory is known, then the solu- 

tion by couple-saess theory can easily be constructed in a first approximation, and that 
couple-stress theory yields only an insignificant refinement. In the half-plane problem 

it is shown that the correction to the corresponding classical problem will be essential 

only in the case of rapid oscillaticn of the boundary conditions, i.e. when the state of 
stress being studied is of edge character. Ano:her version of the asymptotic analysis of 

nonclassical problems of elasticity theoiy is given for fibrous media in [2]. 

1. In a Cartesian coordinate system the pl.ane strain relationship in couple-stress ela- 

sticity theory, as presented in [S], are: 
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Here ax, q,, T=“, T,,~ and pX, ~~ are components of the force and moment stress ten- 
sors e,, eU, eXy and ‘XX, %v are components of the strain and bending-torsio-r tensors ; u, 
u the components of the displacement vector; E the Young’s modulus; G the shear 
modulus ; v the Poisson coefficient ; I the characteristic length of the material which 

we shall henceforth consider small as compared with the minimum radius of curvature 
of the hole. 

Utilizing (1. l), we obtain two equations in the displacements 
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Let us introduce the potential function P by using Formulas 

Then the second equation in (1.2) is satisfied identically, and the first will yield the 

governing equation for the function F DtCrtF _ IriJ’v’osF _ o 
U.3) 

Again returning to (1.1). we express all the stresses in terms of F 
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Therefore, the system (1.1) is reduced to one by the introduction of the potential func- 
tion F. Such a method may result in the loss of some solutions as, for example, has been 

shown in [4]. This circumstance indeed causes certain difficulties in the problem under 
consideration. But since they are successfully avoided, and the solution of couple-stress 

elasticity theory problems is unique [5], this will not affect the final result. We call A 
the representation of the stresses in terms of the function F by means of (1.4). It is non- 

symmetric in L, y, and hence, is not unique. Replacing the minus by a plus sign in the 
last two expressions in (1.4), and interchanging E and y in each of the relationships in 

(1.4), we obtain another representation of the stresses in terms of some potential function 
which we denote by CD,. Let 3 designate this representation. The function CJ should also 

be a solution of (1.3) since it is symmetric in r, ye 
Let us transform to curvilinear coordinates a, fi, by putting 

r = 2 (a, PI, Y = Y (ai B) 

and considering r, y to be sufficiently smooth functions of a, J3. Without limiting the 
generality, a, #? can be considered an isothermal network, i, e. we assume that 

dx ay %4 ax i=- 
&a iq’ 

-=-- 
dZ * 
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Let us write the stress tensor components for A in these coordinates by using the gene- 
ral transformation formulas for contravariant tensor components 

c,3=2G + . ..)I F 

4 (1 - v) Cl* -v)CP CF 
I%=- 1 - 2v PI 034 E+.,. pa=- 4(:_fY 91 F + 1.. 0.6) 

Only higher derivatives with respect to g have been written down in (1.6). The coef- 
ficients therein have been expressed in terms of partial derivatives of ,z and Y with 
respect to a and fi. Let us introduce the notation 

Taking (1.5) into account we obtain 
aY 1 -- 91= @ },a (i .7) 

Passing to a, fJ in the representation B , we obtain formulas analogous to (1.6). If the 

expression to replace 91 from (1.6) is denoted therein by 9¶, we then obtain 

Let us consider the problem of stress concentration at a hole whose outline is given by 

the equation fl = 0 by considering the state of stress unperturbed by the hole to be arbi- 
trary and bounded at infinity. To solve the problem it is necessary to construct a func- 
tion satisfying (1.3). and such that the conditions 

aa = vaed=pa=O for p=O (1.9) 

would be satisfied, while the stresses would tend to the unperturbed saesses far from the 
outline. The problem posed degenerates into the classical problem when I = 0. Hence, 
(1.3) goes over into the equation wFo=O (i.10) 

and two boundary conditions must be satisfied 

=a 
W= $l= 0 for p=O (1.11) 

where $1 and $2 are values of cre and rgoat I = 0. Therefore, one condition drops 

out in passing to the classical problem. Let us write (1.3) by expanding the coefficients 

of the derivatives in a Taylor series in fl in the neighborhood of the outline /3 = 0 

Here, only terms needed later have been written down. Let us consider the equation 

The nonzero roots of this equation are 
&=*I+] 

This latter equation has one root with negative real part, i. e. so that the boundary 
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conditions will drop out in the transformation to the classical problem. Therefore, Eq. 
(1.3) and conditions (1.9) degenerate into (1.10) and conditions (1. ll), which are called 

regular in [l], and the results of [l] can then be used for a sufficiently smooth outline 

p = 0 . Let us utilize the representation A. Let Fr determine the solution of the prob- 
lem of the concentration by classical theory, i. e. by an integral of (1. 3 0) with the bound- 
ary conditions (1.11). As the approximate solution F, of (1.3) let us take a function of 
so-called boundary layer-type in the neighborhood of the outline b = 0, namely 

where kr = kr (a). It follows from [l] that 

VVFZ - JVV?-i?Fs = IO (1) (1.12) 

It is here assumed that kr (a) is a sufficiently smooth function to be determined. In 
cases similar to (1.12) we shall say that the considered condition of the problem (Eq. 

(1.3) in this case) is satisfied to the accuracy of quantities on the order of I or, that the 
error in satisfying the conditions is on the order of 1. Such an error will evidently occur 
in complying with (1.3) if we take as its solution 

F = FI + F, 

Let us find a function k, so that F would satisfy the boundary condition 
4’(1 - v) cr 8’ l$=- 1 - 

2v 
910 9’ F,Sk,exp(- 131)] +...=(I for a=’ 

Here 910 is the value of 91 at fl = 0. It is seen from (1.7) that 910 vanishes at those 
points of the outline at which the tangent to the outline of the hole is perpendicular to 
the r-axis. Let us eliminate these points from consideration. The function Fr is inde- 
pendent of J and will be sufficiently smooth by virtue of the condition of smoothness of 
the outline ; hence, the quantity #Fl@lM is bounded ; therefore 

k, = tl’ (1.13) 

where t = t(a) is a bounded quantity. 
The function F1 satisfies conditions (1.11) exactly, and F satisfies the first two condi- 

tions of (1.9) inaccurately. Let us estimate the error thus obtained. It is clear that the 
error from F, is on the order of P. Taking account of (1.13). we see directly that the 

error from F,is on the order of 1. Therefore, F satisfies the mentioned conditions to 

the accuracy of a quantity on the order of 1. The solution 

Q, = u$ + @, (1.14) 

for the representation B is constructed perfectly analogously. Here Chris the classical 
solution of the problem of concentrations, 4, is a function of boundary layer-type. The 
solution (1.14) satisfies the system (1.1) to the accuracy of a quantity on the order of 
I, except, possibly, at points at which the tangent to the outline is perpendicular to the 
y-axis, as follows from (1. 8). 

Let us form a column out of the left sides of (1.6), and denote it by cr. The columns 
of the operators on the right sides of (1.6) are denoted by Lo for 10 and by L, for P . We 
designate the corresponding columns for the representation B by MO and Ms. 

Let us divide the outline p = 0 into m pieces such that either’91 # 0 or 9% # 0 on 
each. Let a vary between 0 and 2 n on the outline, and let Q be the points of division, 
where i = 0, I..... m. Evidently, there is an ei for each li such that the quantities q, and 
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g2 would not vanish on the segment la+ -pi, ai -L ~$1 . For definiteness, let us consider 
gl # 0 on those segments [a(, cr.{+,] where i is even, and 9* # 0 in the rest. Let us 
introduce the sufficiently smooth functions CJ+ (rj and R (z),which are mutually symmet- 
ric in the ry plane relative to the line y = 1;)a, where 91 s 1 in those segmekts 1~ + 
-- fi, ai., - Q_,] where i is even, and Q E 0 in those segments [a, + ~4. a+r -ri,lJ 
where i is odd. 

It follows from the uniqueness theorem in classical elasticity theory that 

L”F, = .M”chi (t.15) 

Formulas (1.4) and analogous formulas for the representation B, as well as the consi- 

dered type of state of stress unperturbed by the hole permit the deduction that the quan- 
tities f-,f, and .tf,Ot, tend to zero with distance from the hole. Consequently, F, and Q, 

are boundary layer-type functions, the quantities 

WI. Wry .K@r , M, @* 

also diminish to zero far from the outline fi = 0. It follows from the above that the 

solution of the posed problem will be the following to the accuracy of quantities on the 
order of 1 : 

s = Wl + % (a) lf%F~ + (LO + PL,) &I + cpt (a) IP.~fA + (Afo + rZ.tf,i@J 

Indeed, the order of the error does not change by comparison with the solutions ,F and 

O,, and the state of stress tends to the corresponding stress state unperturbed by the hole 
with distance from the hole. The problem is solved. Let us note that it is necessary to 
operate on two representations, because ea%h separately does not possess sufficient gene- 

rality at points where 9x0 and 9~ (the value of 91 at 6 = 0) vanish, From the mode of the 
solution found we can deduce that the effect of bending stresses in the problem of stress 
concentration at an arbitrary curved hole (with the constraints stipulated above) is on the 
order of I everywhere including points of the outline. 

2. Let us consider an upper half-plane Y > 0 subjected to a loading varying as 
- sin nz applied orthogonal to the plane at the g = 0 boundary. For convenience, let 
us introduce the quantity N by means of d!’ = In. Let us utilize the representation A: 

The solution by classical theory of the problem is 

PO - (PI + c&C”” cos Rt (2.1) 

Finding the constants er and et from the boundary conditions we obtain 

et) I”* = - sin nz 

Here a,‘(” is the value of 6, from (1.4) at 2 = 0. The couple-stress theory solution is 

F = IV: + f&+” + fa ezp (--nil. + WV’* v)l cos nz (2.2) 
Finding the constants fr, is, 1, from the boundary conditions 

=u = - sin nt. 
we obtah 

zyt = 0, llV = 0 for y = 0 

e, I!,=0 = 
f 
- 1 + 

4(1-v)(li +N-q’*-1) 

2(1 - v) ([ 1 + ‘Y-q”* - 1) + ‘ir Nq [I + h+ I sin ax 

It has been shown in [6] that the Poisson coefficient v varies between 0 and ‘/ain 
couple-stress elasticity theory. Let us use the notation 

&a) I- = Q). or /_, = oti, 
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and let us evaluate & for several values of N between */,a_ and 10 for v I 0 and 

v = ‘I,. for v = 0 
N = ‘/*Cl ‘I8 ‘is ‘k ‘I, i 24 6 8 10 
& = 0.07 O.iQ5 0.18 0.32 0.74 1.07 1.26 1.3 1.36 i.33 1.33 

for v = I/, 
fi = r/r0 118 ‘Is ‘1. 

o? 0 7; 0922 0 894 i 0: 8 I0 b = 0.035 0.053 0.09 0.17 . . , . . i 4 
It is seen from the tables that the correction to classical theory is essential in this 

problem if the wavelength of the sinusoidal loading is comparable to the characteristic 

length of the material 1, i.e. if n is large. It is seen from (2.1) and (2.2) that in this 

case both the classical theory and the couple-stress theory solutions damp out rapidly 
with distance from the boundary, The correction in the simplest problem solved here 

turns out to be essential, which is not accidental. It has been shown in [7] that for ellip- 
tic equations with rapidly oscillating boundary conditions given on a sufficiently smooth 

boundary, the solution damps out rapidly with distance from the boundary, and can easily 

be constructed to any degree of accuracy. It is hence easy to observe that if the boundary 
conditions of the problem of oscillations are given on a sufficiently smooth boundary in 
couple-stress elasticity theory, then the solution damps out rapidly with distance from 

the boundary as the oscillations increase, and the correction to classical theory hence 

grows and can turn out to be essential. 
The author is grateful to A. L. Gol’denveizer for supervising the research, and to Iu. N. 

Rabotnov for his attention. 
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